Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Cancer ; 24(4): 240-260, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38424304

RESUMO

Protein lipidation describes a diverse class of post-translational modifications (PTMs) that is regulated by over 40 enzymes, targeting more than 1,000 substrates at over 3,000 sites. Lipidated proteins include more than 150 oncoproteins, including mediators of cancer initiation, progression and immunity, receptor kinases, transcription factors, G protein-coupled receptors and extracellular signalling proteins. Lipidation regulates the physical interactions of its protein substrates with cell membranes, regulating protein signalling and trafficking, and has a key role in metabolism and immunity. Targeting protein lipidation, therefore, offers a unique approach to modulate otherwise undruggable oncoproteins; however, the full spectrum of opportunities to target the dysregulation of these PTMs in cancer remains to be explored. This is attributable in part to the technological challenges of identifying the targets and the roles of protein lipidation. The early stage of drug discovery for many enzymes in the pathway contrasts with efforts for drugging similarly common PTMs such as phosphorylation and acetylation, which are routinely studied and targeted in relevant cancer contexts. Here, we review recent advances in identifying targetable protein lipidation pathways in cancer, the current state-of-the-art in drug discovery, and the status of ongoing clinical trials, which have the potential to deliver novel oncology therapeutics targeting protein lipidation.


Assuntos
Neoplasias , Processamento de Proteína Pós-Traducional , Humanos , Neoplasias/tratamento farmacológico , Fosforilação , Fatores de Transcrição , Proteínas Oncogênicas
2.
PLoS Pathog ; 18(6): e1010612, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35727847

RESUMO

The interaction between immune cells and virus-infected targets involves multiple plasma membrane (PM) proteins. A systematic study of PM protein modulation by vaccinia virus (VACV), the paradigm of host regulation, has the potential to reveal not only novel viral immune evasion mechanisms, but also novel factors critical in host immunity. Here, >1000 PM proteins were quantified throughout VACV infection, revealing selective downregulation of known T and NK cell ligands including HLA-C, downregulation of cytokine receptors including IFNAR2, IL-6ST and IL-10RB, and rapid inhibition of expression of certain protocadherins and ephrins, candidate activating immune ligands. Downregulation of most PM proteins occurred via a proteasome-independent mechanism. Upregulated proteins included a decoy receptor for TRAIL. Twenty VACV-encoded PM proteins were identified, of which five were not recognised previously as such. Collectively, this dataset constitutes a valuable resource for future studies on antiviral immunity, host-pathogen interaction, poxvirus biology, vector-based vaccine design and oncolytic therapy.


Assuntos
Doenças Transmissíveis , Poxviridae , Vaccinia , Humanos , Evasão da Resposta Imune , Proteínas de Membrana/metabolismo , Vírus Vaccinia
3.
Elife ; 112022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35226596

RESUMO

The arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses to the swine industry worldwide. Here we apply ribosome profiling (RiboSeq) and parallel RNA sequencing (RNASeq) to characterise the transcriptome and translatome of both species of PRRSV and to analyse the host response to infection. We calculated programmed ribosomal frameshift (PRF) efficiency at both sites on the viral genome. This revealed the nsp2 PRF site as the second known example where temporally regulated frameshifting occurs, with increasing -2 PRF efficiency likely facilitated by accumulation of the PRF-stimulatory viral protein, nsp1ß. Surprisingly, we find that PRF efficiency at the canonical ORF1ab frameshift site also increases over time, in contradiction of the common assumption that RNA structure-directed frameshift sites operate at a fixed efficiency. This has potential implications for the numerous other viruses with canonical PRF sites. Furthermore, we discovered several highly translated additional viral ORFs, the translation of which may be facilitated by multiple novel viral transcripts. For example, we found a highly expressed 125-codon ORF overlapping nsp12, which is likely translated from novel subgenomic RNA transcripts that overlap the 3' end of ORF1b. Similar transcripts were discovered for both PRRSV-1 and PRRSV-2, suggesting a potential conserved mechanism for temporally regulating expression of the 3'-proximal region of ORF1b. We also identified a highly translated, short upstream ORF in the 5' UTR, the presence of which is highly conserved amongst PRRSV-2 isolates. These findings reveal hidden complexity in the gene expression programmes of these important nidoviruses.


Viruses have tiny genomes. Rather than carry all the genetic information they need, they rely on the cells they infect. This makes the few genes they do have all the more important. Many viruses store their genes not in DNA, but in a related molecule called RNA. When the virus infects cells, it uses the cells' ribosomes ­ the machines in the cells that make proteins ­ to build its own proteins. One of the central ideas in biology is that one molecule of RNA carries the instructions for just one type of protein. But many viruses break this rule. The ribosomes in cells read RNA instructions in blocks of three: three RNA letters correspond to one protein building block. But certain sequences in the RNA of viruses act as hidden signals that affect how ribosomes read these molecules. These signals make the ribosomes skip backward by one or two letters on the viral RNA, restarting part way through a three-letter block. Scientists call this a 'frameshift', and it is a bit like changing the positions of the spaces in a sentence. The virus causes these frameshifts using proteins or by folding its RNA into a knot-like structure. The frameshifts result in the production of different viral proteins over time. The porcine reproductive and respiratory syndrome virus (PRRSV) uses frameshifts to cause devastating disease in pigs. Besides the sequences in its RNA that allow the ribosomes to skip backwards, the viral enzyme that copies the RNA can also skip forward. This results in shortened copies of its genes, which also changes the proteins they produce. To find out exactly how PRRSV uses these frameshifting techniques, Cook et al. examined infected cells in the laboratory. They monitored the RNA made by the virus and looked closely at the way the cells read it using a technique called ribosome profiling. This revealed that frameshifting increases over the course of an infection. This is partly because the viral protein that causes frameshifts builds up as infection progresses, but it also happened with frameshifts caused by RNA knots. The reason for this is less clear. Cook et al. also discovered several new RNAs made later in infection, which could also change the proteins the virus makes. RNA viruses cause disease in humans as well as pigs. Examples include coronaviruses and HIV. Many of these also have frameshift sites in their genomes. A better understanding of how frameshifts change during infection may aid drug development. Future work could help researchers to understand which proteins viruses make at which stage of infection. This could lead to new treatments for viruses like PRRSV.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Códon/metabolismo , Mudança da Fase de Leitura do Gene Ribossômico/genética , Perfilação da Expressão Gênica , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Ribossomos/genética , Ribossomos/metabolismo , Suínos , Transcriptoma
4.
Front Immunol ; 12: 600056, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628210

RESUMO

The cellular response to interferon (IFN) is essential for antiviral immunity, IFN-based therapy and IFN-related disease. The plasma membrane (PM) provides a critical interface between the cell and its environment, and is the initial portal of entry for viruses. Nonetheless, the effect of IFN on PM proteins is surprisingly poorly understood, and has not been systematically investigated in primary immune cells. Here, we use multiplexed proteomics to quantify IFNα2a-stimulated PM protein changes in primary human CD14+ monocytes and CD4+ T cells from five donors, quantifying 606 and 482 PM proteins respectively. Comparison of cell surface proteomes revealed a remarkable invariance between donors in the overall composition of the cell surface from each cell type, but a marked donor-to-donor variability in the effects of IFNα2a. Furthermore, whereas only 2.7% of quantified proteins were consistently upregulated by IFNα2a at the surface of CD4+ T cells, 6.8% of proteins were consistently upregulated in primary monocytes, suggesting that the magnitude of the IFNα2a response varies according to cell type. Among these differentially regulated proteins, we found the viral target Endothelin-converting enzyme 1 (ECE1) to be an IFNα2a-stimulated protein exclusively upregulated at the surface of CD4+ T cells. We therefore provide a comprehensive map of the cell surface of IFNα2a-stimulated primary human immune cells, including previously uncharacterized interferon stimulated genes (ISGs) and candidate antiviral factors.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Enzimas Conversoras de Endotelina/imunologia , Interferon-alfa/farmacologia , Monócitos/imunologia , Linfócitos T CD4-Positivos/citologia , Humanos , Monócitos/citologia , Proteômica
5.
Sci Rep ; 10(1): 4560, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165698

RESUMO

Monocytes are a critical component of the cellular innate immune system, and can be subdivided into classical, intermediate and non-classical subsets on the basis of surface CD14 and CD16 expression. Classical monocytes play the canonical role of phagocytosis, and account for the majority of circulating cells. Intermediate and non-classical cells are known to exhibit varying levels of phagocytosis and cytokine secretion, and are differentially expanded in certain pathological states. Characterisation of cell surface proteins expressed by each subset is informative not only to improve understanding of phenotype, but may also provide biological insights into function. Here we use highly multiplexed Tandem-Mass-Tag (TMT)-based mass spectrometry with selective cell surface biotinylation to characterise the classical monocyte surface proteome, then interrogate the phenotypic differences between each monocyte subset to identify novel protein markers.


Assuntos
Biomarcadores/metabolismo , Proteínas de Membrana/metabolismo , Monócitos/metabolismo , Proteômica/métodos , Cromatografia Líquida , Regulação da Expressão Gênica , Voluntários Saudáveis , Humanos , Imunidade Celular , Espectrometria de Massas , Fenótipo
6.
Front Cell Infect Microbiol ; 10: 578259, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585265

RESUMO

Human cytomegalovirus (HCMV) is an important pathogen in immunocompromised individuals and neonates, and a paradigm for viral immune evasion. We previously developed a quantitative proteomic approach that identified 133 proteins degraded during the early phase of HCMV infection, including known and novel antiviral factors. The majority were rescued from degradation by MG132, which is known to inhibit lysosomal cathepsins in addition to the proteasome. Global definition of the precise mechanisms of host protein degradation is important both to improve our understanding of viral biology, and to inform novel antiviral therapeutic strategies. We therefore developed and optimized a multiplexed comparative proteomic analysis using the selective proteasome inhibitor bortezomib in addition to MG132, to provide a global mechanistic view of protein degradation. Of proteins rescued from degradation by MG132, 34-47 proteins were also rescued by bortezomib, suggesting both that the predominant mechanism of protein degradation employed by HCMV is via the proteasome, and that alternative pathways for degradation are nevertheless important. Our approach and data will enable improved mechanistic understanding of HCMV and other viruses, and provide a shortlist of candidate restriction factors for further analysis.


Assuntos
Citomegalovirus , Proteômica , Humanos , Evasão da Resposta Imune , Recém-Nascido , Proteínas , Proteólise
7.
Elife ; 82019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31873071

RESUMO

Human cytomegalovirus (HCMV) extensively modulates host cells, downregulating >900 human proteins during viral replication and degrading ≥133 proteins shortly after infection. The mechanism of degradation of most host proteins remains unresolved, and the functions of many viral proteins are incompletely characterised. We performed a mass spectrometry-based interactome analysis of 169 tagged, stably-expressed canonical strain Merlin HCMV proteins, and two non-canonical HCMV proteins, in infected cells. This identified a network of >3400 virus-host and >150 virus-virus protein interactions, providing insights into functions for multiple viral genes. Domain analysis predicted binding of the viral UL25 protein to SH3 domains of NCK Adaptor Protein-1. Viral interacting proteins were identified for 31/133 degraded host targets. Finally, the uncharacterised, non-canonical ORFL147C protein was found to interact with elements of the mRNA splicing machinery, and a mutational study suggested its importance in viral replication. The interactome data will be important for future studies of herpesvirus infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Infecções por Citomegalovirus/genética , Citomegalovirus/genética , Proteínas Oncogênicas/genética , Proteômica , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/virologia , Regulação Viral da Expressão Gênica/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Splicing de RNA/genética , RNA Mensageiro/genética , Proteínas Virais/genética , Replicação Viral/genética
8.
Cell Rep ; 27(6): 1920-1933.e7, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067474

RESUMO

Vaccinia virus (VACV) has numerous immune evasion strategies, including multiple mechanisms of inhibition of interferon regulatory factor 3 (IRF-3), nuclear factor κB (NF-κB), and type I interferon (IFN) signaling. Here, we use highly multiplexed proteomics to quantify ∼9,000 cellular proteins and ∼80% of viral proteins at seven time points throughout VACV infection. A total of 265 cellular proteins are downregulated >2-fold by VACV, including putative natural killer cell ligands and IFN-stimulated genes. Two-thirds of these viral targets, including class II histone deacetylase 5 (HDAC5), are degraded proteolytically during infection. In follow-up analysis, we demonstrate that HDAC5 restricts replication of both VACV and herpes simplex virus type 1. By generating a protein-based temporal classification of VACV gene expression, we identify protein C6, a multifunctional IFN antagonist, as being necessary and sufficient for proteasomal degradation of HDAC5. Our approach thus identifies both a host antiviral factor and a viral mechanism of innate immune evasion.


Assuntos
Histona Desacetilases/metabolismo , Interferons/antagonistas & inibidores , Proteômica , Vírus Vaccinia/metabolismo , Vaccinia/metabolismo , Vaccinia/virologia , Citomegalovirus/metabolismo , Regulação para Baixo , Regulação Viral da Expressão Gênica , Herpesvirus Humano 1/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Interferons/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Fatores de Tempo , Vírus Vaccinia/genética , Vírus Vaccinia/imunologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
9.
Cell Host Microbe ; 24(3): 447-460.e11, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30122656

RESUMO

Human cytomegalovirus (HCMV) is an important pathogen with multiple immune evasion strategies, including virally facilitated degradation of host antiviral restriction factors. Here, we describe a multiplexed approach to discover proteins with innate immune function on the basis of active degradation by the proteasome or lysosome during early-phase HCMV infection. Using three orthogonal proteomic/transcriptomic screens to quantify protein degradation, with high confidence we identified 35 proteins enriched in antiviral restriction factors. A final screen employed a comprehensive panel of viral mutants to predict viral genes that target >250 human proteins. This approach revealed that helicase-like transcription factor (HLTF), a DNA helicase important in DNA repair, potently inhibits early viral gene expression but is rapidly degraded during infection. The functionally unknown HCMV protein UL145 facilitates HLTF degradation by recruiting the Cullin4 E3 ligase complex. Our approach and data will enable further identifications of innate pathways targeted by HCMV and other viruses.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Proteínas/química , Proteínas Virais/química , Citomegalovirus/genética , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Humanos , Evasão da Resposta Imune , Estabilidade Proteica , Proteínas/genética , Proteínas/imunologia , Proteômica , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia
10.
Cell Rep ; 19(7): 1479-1493, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28514666

RESUMO

Epstein-Barr virus (EBV) replication contributes to multiple human diseases, including infectious mononucleosis, nasopharyngeal carcinoma, B cell lymphomas, and oral hairy leukoplakia. We performed systematic quantitative analyses of temporal changes in host and EBV proteins during lytic replication to gain insights into virus-host interactions, using conditional Burkitt lymphoma models of type I and II EBV infection. We quantified profiles of >8,000 cellular and 69 EBV proteins, including >500 plasma membrane proteins, providing temporal views of the lytic B cell proteome and EBV virome. Our approach revealed EBV-induced remodeling of cell cycle, innate and adaptive immune pathways, including upregulation of the complement cascade and proteasomal degradation of the B cell receptor complex, conserved between EBV types I and II. Cross-comparison with proteomic analyses of human cytomegalovirus infection and of a Kaposi-sarcoma-associated herpesvirus immunoevasin identified host factors targeted by multiple herpesviruses. Our results provide an important resource for studies of EBV replication.


Assuntos
Linfócitos B/metabolismo , Linfócitos B/virologia , Herpesvirus Humano 4/fisiologia , Proteômica/métodos , Replicação Viral , Ciclo Celular , Membrana Celular/metabolismo , Proteínas do Sistema Complemento/metabolismo , Regulação para Baixo , Humanos , Proteólise , Receptores de Antígenos de Linfócitos B/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...